RESEARCH EXPERIENCES FOR TEACHERS

Enhancing knowledges and skills in modern manufacturing 18 May 2018

<u>Project #2: Advanced Manufacturing – 4 teachers</u> <u>Project #2a: Additive Manufacturing</u>

- Research topic: Relating quality of metal and plastic 3D printed parts with processes parameters
- Focus: One week on additive manufacturing (3D printing) processes
- <u>Lab training</u>: This project allows participants to have hands-on experiences when exploring 3D printing using both plastics and metals. Contact and non-contact metrology techniques will be used to qualitatively and quantitatively assess the quality of a fabricated component.
- <u>Authentic research experience</u>: Teachers would understand 3D printing principles and help in collecting data for a funded project on post-polishing of 3D printed stainless steel parts.
- <u>Equipment</u>: <u>3D printers</u>: Different 3D printer systems for metal and plastics; <u>Metrology</u>: optical measuring microscope, profilometer, digital microscope with 3D profile measurement.
- Expected outcomes: Understand the 3D printing process/limitations. Experience with advanced metrology techniques for dimension/form measurement. Since the costs of plastic 3D printers are reasonable, teachers could apply their new knowledge by having these at their schools.

This module will be repeated 3 times (week #3, 4, and 5) for groups of 4 participants.

	Date	Topic	Note
_ _ _	Mon Jun 25 Jul 2 Jul 9	Introduction to AM [Wayne] Compare AM with other manufacturing processes Classification	Tour: 3-5 pm, EIC Submit alternative penholder projects
_ _ _	Tue June 26 Jul 3 Jul 10	Process presentations: - stereo lithography [Group1] - fused deposition modeling [Group2] - selective laser melting [Group3] - electron beam melting [Group4] - polyjet photopolymer [Group5] - laminated object manufacturing [Group6] - new developments [Wayne]	Tour: 3-5pm, MCF
_ _ _	Wed June 27 Jul 4 (off) Jul 11	Defects and limitations [Wayne]Post processing	Lab: Fatigue testing
_ _ _	Thu June 28 Jul 5 Jul 12	Lab: Polishing ABS and Inconel.	Lab: Surface characterizing.
_ _ _	Fri Jun 29 Jul 6 Jul 13	 Group discussion: 3D printing implementation and challenge Tentative topic and plan for implementation Houstex (Feb 26-28, 2019): AM student competition 	Group social activity follows