

Curriculum Guide – 2018-2019 Grades 11- 12/Days: MWF

Aldine ISD

First Nine Weeks Scope and Sequence

Unit 1: Engineering Notebooks	Unit 4: Engineering Design Process	Unit 7: Traditional Manufacturing
Unit 2: Careers in Engineering	Unit 5: Fusion 360	Unit 8: Final Project: Pen Base & Pen Holder
Unit 3: Technical Drafting	Unit 6: 3D Printing and its processes	

Unit 1 Vocabulary

Calculations	Class Notes	Designs Drawings	Engineering Design	Ideas
Interactions	Meeting Notes	Observations	Patents	

Unit 1: Engineering Notebooks

TEKS	Standard Clarifiers	Guiding Questions	
§130.410 (c) (7) The student uses			
engineering design methodologies. The student is expected to:	Students must know:	Essential Question	
 (A) demonstrate an understanding of and discuss principles of ideation; (B) demonstrate critical thinking, identify the system constraints, and make fact- 	1. How to use an engineering notebook to record prototypes, corrections, and/or mistakes in the design process.	1. What are two factors why using Engineering notebook are important?	
 based decisions; (C) use rational thinking to develop or improve a product; (D) apply decision-making strategies 	2. How to use an engineering notebook and portfolio to record the final design, construction, and manipulation of finished projects.	2. Identify what makes a good Engineering Notebook	
when developing solutions;(E) use an engineering notebook to	Students must be able to:	Guiding Questions	
record prototypes, corrections, and/or mistakes in the design process; and (F) Use an engineering notebook and	1. Setup and document lesson notes in their engineering notebook.	1. Can you understand why the notebook is important?	
portfolio to record the final design, construction, and manipulation of finished projects.	2. Use rational thinking to develop or improve a product. Misconceptions: The importance of an Engineering Notebook.	2. What is a patent?	

Aldine ISD

Unit 2 Vocabulary

		Drofting and		
Aerospace Engineer	Architect Engineer	Design Engineer	Software Engineer	
Agricultural Engineer	Civil Engineer	Geological Engineer	Marine Engineer	
Automotive Engineer	Computer Engineer	Petroleum Engineer		

Unit 2: Careers in Engineering

TEKS	Standard Clarifiers	Question
 §130.402. (c) (2) The student investigates the components of engineering and technology systems. The student is expected to: (A) investigate and report on the history of engineering science; (B) identify the inputs processes and 	 Students must know: How to identify the traits of leadership. Describe what to expect when entering the world of work. 	Essential Question What are some things you already know about Engineers?
outputs associated with technological		Guiding Questions
 systems; (C) describe the difference between open and closed systems; (D) describe how technological systems interact to achieve common goals; (E) compare and contrast engineering, science, and technology careers; (F) conduct and present research on emerging and innovative technology; and (G) Demonstrate proficiency of the engineering design process. 	 Students must be able to: 1. Identify many career possibilities related to the fields of engineering. 2. Identify sources of information about careers in engineering. Misconceptions: Understanding what engineers really do. http://educatingengineers.com/career-specialties 	 List 3 sites you can utilize to obtain career and college information pertaining to engineering. Can you identify sources of information about careers in Engineering?

Aldine ISD

Unit 3 Vocabulary

Architect's scale	Border line	Break lines	Centerlines	Construction lines	Cutting-plane lines
Dimension lines	Engineer's scale	Erasing shield	Extension lines	Guidelines	Hidden lines
Line conventions	Mechanical drafters scale	Metric scale	Object line	Phantom lines	Scale
Scale clip	Section lines	Symmetry centerlines	Visible lines		

Unit 3: Technical Drafting

TEKS	Standard Clarifiers	Questions
 130.42 (c) (10) The student demonstrates a knowledge of drafting by completing a series of drawings that will be published by various media. The student is expected to: (A) set up, create, and modify drawings; (B) store and retrieve geometry; (C) demonstrate an understanding of the use of line-types in engineering drawings; (D) draw 2-D single view objects; (E) create multi-view working drawings using orthographic projection; (F) dimension objects using current American National Standards Institute (ANSI) standards; (G) draw single line 2-D pictorial representations; (H) create working drawings that include section views; and 	Students must know: 1. Display mandala renderings at the beginning of the next class session or at the established deadline. Students must be able to: Use basic drafting skills and techniques when solving drawing Misconceptions: Identifying common sheet size formats for drafting.	 Essential Question True or False? Line conventions are the physical characteristics of lines and their different standards for use. True or False? Object lines, cutting-plane lines, and centerlines are all drawn to the same line weight. 3. Guiding Questions
(I) demonstrate a knowledge of screw thread design per ANSI standards by drawing a hex head bolt with standard, square, and acme threads.		1. Why do you think there are different drafting techniques?

Aldine ISD

Unit 4 Vocabulary

	a i i		D	D :	
Constraints	Creativity	Criteria	Data	Design	Distribution
Experiment	Invention	Marketing	Problem solving	Product	Process
System	systematic	Technology	Engineering Design Process (EDP)		

Unit 4: Engineering Design Process

TEKS	Standard Clarifiers	Questions
130.410 (c) (7) The student uses engineering design methodologies. The	Students must know:	Essential Question
student is expected to: (A) demonstrate an understanding of	1. Define terms associated with the lesson.	1. Choose one idea. On the back of this page, draw a
and discuss principles of ideation; (B) demonstrate critical thinking.	2. Understand the Engineering Design Process.	detailed picture of the solution you chose. Label
identify the system constraints, and make fact-based decisions:	Students must be able to:	the drawing to explain what each part is made
(C) use rational thinking to develop or improve a product:	1. Name the steps of the Engineering Design Process.	out of, how the parts fit
(D) apply decision-making strategies when developing solutions:	2. Apply the engineering design process steps.	work.
(E) use an engineering notebook to		Guiding Questions
record prototypes, corrections, and/or	Misconceptions: The Engineering Design Process is the	
(F) Use an engineering notebook and portfolio to record the final design,	same thing as the Scientific Method.	1. Where do you think you will run into problems with your solution?
construction, and manipulation of finished projects.	http://teachers.egfi-k12.org/lesson-engineering-design-process/	Where do you think the weak parts in your creation will be?

Aldine ISD

Unit 5 Vocabulary

planar	Planar material	Teamwork	Craftsmanship		
Assemblies	Browser Menu	Constraints	Rendering	CAM	
Animate	Computer Aided Design (CAD)	Degrees' of Freedom	Views	STL files	

Unit 5: Fusion 360

TEKS	Standard Clarifiers	Questions
§130.410. (c) (6) The student applies the concepts of sketching and skills associated with computer-aided drafting and design.	Students must know:	Essential Question
The student is expected to:(E) use advanced construction techniques;(F) prepare and revise annotated multi-	 Understand how to use Fusion 360. Demonstrate the use of the Fusion 360 user interface. 	1. Write a (2) paragraph paper describing one fact that you have learned
computer-aided drafting and design to industry standards;	Students must be able to:	about the nature Fusion 360 and two strategies you
(G) demonstrate knowledge of effective file structure and management;	1. Understand the nature of Fusion and demonstrate effective use of design from idea to prototype.	have observed that demonstrated an effective
(H) use advanced dimensioning techniques;(I) construct and use basic 3D parametric drawings; and	1. Misconcentions: Understanding the difference between	use to the design process.
(J) Develop and use prototype drawings for	Autodesk Inventor and Autodesk Fusion 360.	Guiding Questions
 presentation. (7) The student uses engineering design methodologies. The student is expected to:(A) demonstrate an understanding of and discuss principles of ideation; 		 Give a list of real world products that we use today designed using a CAD software.
demonstrate critical thinking, identify the system constraints, and make fact-based decisions;(B) demonstrate critical thinking, identify		2. Describe how to create a drawings and renderings.

Aldine ISD

Unit 6 Vocabulary

Mockup	Model	Production fixture	Prototype	Surface model	Solid model
wireframe	Stl file	ABS	Build platform	CAD	CNC
Curing	FDM	Hardening	OBJ	Photopolymer	SLA

Unit 6: 3D Printing and its Processes

TEKS	Standard Clarifiers	Questions
 130.410 (c) (10) The student builds a prototype using the appropriate tools, materials, and techniques. The student is expected to: (A) identify and describe the steps needed to produce a prototype; (B) identify and use appropriate tools, equipment, machines, and materials to produce the prototype; and (C) Present the prototype using a variety of media. 	 Students must know: 1. Describe tension and compression forces. 2. Understand the nature of a given material and demonstrate effective use of that material Students must be able to: Evaluate the capabilities of a material by analyzing different configurations. Compare and contrast structures using different materials. Misconceptions: The limitations of 3D printing. http://3dprintingforbeginners.com/glossary/ 	 Essential Question Explain why industry uses models, mockups, and prototypes. Discuss how 3D printing is evolving. Guiding Questions Discuss the strengths of the design. Discuss the weaknesses of 3D printing. Construct simple models.

Teacher: Ashley Thompson Chester W. Nimitz Senior High School

Advanced Engineering Design & Presentation

Aldine ISD

Unit 7 Vocabulary

Additive manufacturing	Blanking	Broach	Casting	Composite	Compression molding
CNC	Direct casting	direct shell	Production casting	Drilling	Forming
Fused deposition	Grinding	Injection molding	Just-in-time (JIT)	Lathe	Manufacturing
modeling			manufacturing		machine tool

Unit 7: Traditional Manufacturing

TEKS	Standard Clarifiers	Questions
 130.412 (c) (8(8) The student creates justifiable solutions to open-ended real-world problems using engineering design practices and processes. The student is expected to: (A) identify and define an engineering problem; (B) formulate goals, objectives, and requirements to solve an engineering problem; (C) determine the design parameters associated with an engineering problem such as materials, personnel, resources, funding, manufacturability, feasibility, and time; (D) establish and evaluate constraints pertaining to a problem, including health, safety, social, environmental, ethical, political, regulatory, and legal; (E) identify or create alternative solutions to a problem using a variety of techniques 	Standard Clarifiers Students must know: 1. What is fused deposition modeling? 2. Explain the different methods of molding plastics. Students must be able to: 1. Identify and describe basic manufacturing processes. 2. Name and describe the different types of modern machine tolls used to manufacture products. Misconceptions: The entire manufacturing process as a whole.	Questions Essential Question 1. What differentiates a basic CNC milling machine from a machining center? Guiding Questions 1. Briefly describe the difference between the sterolithogrpahpy and selective laser melting (SLM) processes.

Teacher: Ashley Thompson Chester W. Nimitz Senior High School

Advanced Engineering Design & Presentation

Aldine ISD

Unit 8 Vocabulary

Additive manufacturing	Blanking	Broach	Casting	Composite	Compression molding
CNC	Direct casting	direct shell	Production casting	Drilling	Forming
Fused deposition modeling	Grinding	Injection molding	Just-in-time (JIT) manufacturing	Lathe	Manufacturing machine tool

Unit 8: Project: Pen Base & Pen Holder

TEKS	Standard Clarifiers	Questions
\$130.410. (c) (6) The student applies the concepts of sketching and skills associated with computer-aided drafting	Students must know:	Essential Question
and design. The student is expected to: (E) use advanced construction	1. Use CAD software to design.	1. Pick five to ten of the key terms that you learned in
techniques; (F) prepare and revise annotated multi-	2. Recognize key engineering design and manufacturing terminology.	this chapter.
dimensional production drawings in		Guiding Questions
computer-aided drafting and design to	Students must be able to:	
industry standards;		1. What issues did you
(C) improve a system design to meet a	1. Complete a final project using skills and knowledge	encounter while working
specified need, including properties of materials selected:	obtained over the semester.	on your final project?
(c) (10) (A) identify and describe the	2. 3D print final design.	2. What steps did you take to
steps needed to produce a prototype;		find solutions?
(B) identify and use appropriate tools,		
equipment, machines, and materials to	Misconceptions: The Engineering Design Process	
produce the prototype; and		
(C) Present the prototype using a		