$\bar{A} \sqrt{M}$

TEXAS A\&M
UNIVERSITY

UNIVERSITY WRITING CENTER

Quoth the Raven
Days of Yown
Youine a Borne scone
what for?

EVEN great WRITERS NEED HELP

Research Posters

http://writingcenter.tamu.edu/Classroom
-Workshops/Graduate/Research-Posters

How Are Posters Used?

Know Your Audience

Experts:
Facts, figures, and explanations

Non-experts:
Results or applications

Layout: IMRaD

http://www.pharmacy.purdue.edu/features/2009-05-01.PosterSessions/
(Abstract)

Introduction

Methods

Results, and

Discussion
(References)
(Acknowledgements)

Style

Guide the eye with bullets, white space, italics, bold, and headings.

For text, use:

- Short paragraphs
- Concise sentences
- Parallel lists

Text: Short \& Sweet

Original

The ideal anesthetic should quickly make the patient unconscious but allow a quick return to consciousness, have few side effects, and be safe to handle.

Revised

Ideal anesthetics

- Quick sedation
- Quick recovery
- Few side effects
- Safe to handle

Font Type

Font Size

For Headings use Sansserif fonts:

- Calibri

For Body Text use Serifonts:

- Times New Roman

"Avoid:

- Bauhaus 93
- Brush Script MT
- Comic Sans

Title(96)

Headings (36)
Body Text (32)

Visuals Should Be...

\checkmark Decipherable from a distance

\checkmark Designed to convey the gist of your message
\checkmark Properly cited and labeled in text

Gas turbine engines run better at higher combustion temperatures

At higher combustion temperatures, these engines generate more power and use less fuel. However, these temperatures are restricted by melting temperatures of the turbine blades downstream of the combustor (see Figure 1).

Figure 1. Pratt \& Whitney F119 gas turbine engine.

Use Color Purposefully

- Show connections
- Guide the audience through the poster
- Highlight
- Create a mood or suggest a theme

*Be careful of color choice!

Easy-to-Follow Layouts

The layout should have a left-to-right flow with columns in horizontal rows.

Left-to-right Flow

 In Horizontal Rows

 In Horizontal Rows}

The evaluation of peer consultant competency as affected by gender stereotypic beliefs has been documented in the personal anecdotes of writing center directors, administrators, and consultants. Student writers judge female writing consultants to exhibit stereotypically feminine behaviors, and male writing consultants are judged to exhibit stereotypically masculine behaviors. Additionally, student writers have demonstrated a tendency to evaluate the competency of the peer tutor in a manner consistent with their own gender.

I propose that female students will rate female peer consultants to be more effective than male peer consultants, and male students will rate male peer consultants to be more effective than female peer consultants.

All peer writing consultants of the Texas A\&M University Writing Center (UWC) have agreed to participate in this research. Each one has been trained to utilize a nondirective facilitative style with student writers; thus, each peer consultant will exhibit similar behaviors and give comparable help to every student writer.

Goders With Conscience

Information \& Communication Technology Department by Ling Luo and Chaoer Shen

Introduction
 - maprian youkdut

A Day in the Life

The Organization

The Open Source Model

EDVty
 ©ivinili

 srideminutemanabiok

Staff

 (1)

 - wivetiotimith
cintus.
:

Facilities Management

 -owntu|-

Finances

Closing
Q10

You critique the following posters.

Gas turbine engines run better at higher combustion temperatures

At higher combustion temperatures, these engines generate more power and use less fuel. However, these temperatures are restricted by melting temperatures of the turbine blades downstream of the combustor (see Figure 1).

Figure 1. Pratt \& Whitney F119 gas turbine engine.

Dirt purge holes on turbine blade tips allow for higher combustion temperatures

Harmful hot gases from the combustor leak across the gap between the blade tip and the shroud (see Figure 2). Dirt purge holes expel foreign particles from the blade tip so that film cooling holes are not blocked.

Figure 2. Flow at the tip region of a turbine blade.

The project goal was to find the film cooling effects of these dirt purge holes

To find the effects, we performed wind tunnel experiments with scaled turbine blades. The wind tunnel was low speed and low temperature, and the blades, shown in Figure 3, were scaled at 12 times their normal size. To measure temperatures on the blade tip, we used an infrared camera. Tip gap sizes and amount of coolant flow from the dirt purge holes were both varied.

Figure 3. Large-scale turbine blade in wind tunnel.

Temperature measurements were converted to dimensionless cooling effectiveness

Effectiveness

Cooling increased with blowing ratio

The effectiveness contours of Figure 4 show that cooling increased with blowing ratio.

Figure 4. Measurements of film cooling effectiveness.

Tip size dramatically affected cooling

In Figure 5, the lateral averages of effectiveness plotted against the axial chord length show that tip size dramatically affected the cooling.

Figure 5. Laterally averaged effectiveness plotted against normalized axial chord.

In summary, dirt purge holes provide cooling to the tip surface

While intended to remove dirt from the blade, dirt purge holes also provide cooling to the tip surface. This cooling is enhanced with a small tip gap as the dirt purge floods the tip region near the leading edge with cool air.

Acknowledgments

The sponsor for this project was Pratt \& Whitney.

Gas turbine engines run better at higher combustion temperatures

At higher combustion temperatures, these engines generate more power and use less fuel. However, these temperatures are restricted by melting temperatures of the turbine blades downstream of the combustor (see Figure 1).

Figure 1. Pratt \& Whitney F119 gas turbine engine.

Dirt purge holes on turbine blade tips allow for higher combustion temperatures

Harmful hot gases from the combustor leak across the gap between the blade tip and the shroud (see Figure 2). Dirt purge holes expel foreign particles from the blade tip so that film cooling holes are not blocked.

Figure 2. Flow at the tip region of a turbine blade.

The project goal was to find the film cooling effects of these dirt purge holes

To find the effects, we performed wind tunnel experiments with scaled turbine blades. The wind tunnel was low speed and low temperature, and the blades, shown in Figure 3, were scaled at 12 times their normal size. To measure temperatures on the blade tip, we used an infrared camera. Tip gap sizes and amount of coolant flow from the dirt purge holes were both varied.

Figure 3. Large-scale turbine blade in wind tunnel.

Temperature measurements were converted to dimensionless cooling effectiveness

Effectiveness

Cooling increased with blowing ratio

The effectiveness contours of Figure 4 show that cooling increased with blowing ratio.

Figure 4. Measurements of film cooling effectiveness.

Tip size dramatically affected cooling

In Figure 5, the lateral averages of effectiveness plotted against the axial chord length show that tip size dramatically affected the cooling.

Figure 5. Laterally averaged effectiveness plotted against normalized axial chord.

In summary, dirt purge holes provide cooling to the tip surface

While intended to remove dirt from the blade, dirt purge holes also provide cooling to the tip surface. This cooling is enhanced with a small tip gap as the dirt purge floods the tip region near the leading edge with cool air.

Acknowledgments

The sponsor for this project was Pratt \& Whitney.

Evaluation of Legume Cooking Characteristics Using a Rapid Screening Method．

orovement of legume varieties is cessary to overcome challenges of w diseases and achieve higher yields． st legumes are consumed as cooked eds；consumer preferences for ume products should be orporated earlier in the breeding cess．Methods to rapidly determine se attributes are needed in order to antify consumer preferences
e Mattson cooker，which uses ighted plungers，is used to measure e cooking quality attribute，cooking
egoal of the proposed research was develop an effective，low－cost thod to analyze the cooking quality ributes of legumes．About 25 samples re evaluated during an 8 hr period． mples were rated for aroma intensity， number of split seed coats ano yledons，turbidity of the broth， ked doneness，and hardness．

jectives：

se a rapid screening method to aluate the cooking quality attributes cowpeas（Vigna unguiculata）． etermine the effect location and oking time hsve on cowpea cooking alities．

thods：

Intactseeds were selected from 25 ppea varieties and a reference cowpea nple

2.

Samples of 5 g from each variety；place dinto plastic hags containing 3 punched holes
3.

Plastic hags were flled with 60 mL al water and soaked overnight for 16 hr

4.

Bags were held by rods in a large cooking container and boiled untilit the and booiled untia seeds were fully cooked

7．Sensory evaluation

Results：

Table 1：Undercoohod Compens CookedS Addational Minuses

Table 2：Overcoshod Cowpeas Cocked 5 Minusestiens

Table 3：Fall Coachella Valley

Table 4：UC Riverside

vaicy	$\stackrel{\square}{0}$	Tat	Atack	4 cc	\％	\％	Sav	ci	amar	．．．
	${ }_{31}^{40}$	只	in	$\stackrel{=1}{80}$	${ }_{10}^{27}$	${ }_{22}^{12}$	\％	\％	I2	\％
ame	20	\pm	13	Wen	16	＝	\％		22	\％
	23		${ }^{4}$	\％	${ }_{31}^{20}$	${ }_{24}^{24}$	${ }_{20}$	2	It	${ }^{682}$
\％rciet	20	20	18	＂	2	${ }^{16}$	T	\％	A	＝
	20	28	18	硅	22	28	3	＊	\％	
max 3 ar	25	23	－	w	23	4			4	

6.

Seeds and their broth were placed in individual bowls

Table 5．Cooking Qualities of Cowpeas

atas		same	$\begin{aligned} & \text { Yanit } \\ & \text { Is.twe } \end{aligned}$	$\sin x$	\sin	$\begin{aligned} & \text { CWan } \\ & \text { Manh } \end{aligned}$	$\operatorname{cosin}_{\substack{\cos \\ \operatorname{sen} \\ \hline}}$	mex							
Tat fixai															
					¢00				$\stackrel{\text { ax }}{\text { ail }}$						
		－ 19			－	${ }_{\text {ar }}^{\text {aot }}$	＂10								
		0×8	${ }^{\text {amam }}$		810										
		zan		aze	9\％										
Varamy	\cdots		Tomest	Lta	\cdots	$\stackrel{y}{0}$	com	Touc｜	－	asath					
Hating								8							
Hirkati							\pm		$2{ }^{21}$						
			品	，			4	\＃							
\％－															
			4	${ }_{0}$			5	5	遃						
\＃namm															
					1i	$\underline{0}$			is						
							－								

Note：
－Dark blue indicates values from the top 20% of samples
－Light blue indicates values from the lower 20% of samples
－Upper values are significantly different than lower values

Conclusions：

－The rapid，low－cost method allows a trained person to evaluate multiple cooking properties of 25 samples within 8 hours
－The method differentiated varieties according to cooking properties
－Seeds grown in different locations yielded different cooking qualities
－It was worth while to add 5 min cooking time to undercooked seeds
－But not worthwhile to cook overcooked seeds 5 min less

Acknowledgements

Bean and Cowpea CRSP for partial financial support； Dr．Agnes Mwangwela and Dr．Amanda Mimnaar for their assistance in method development：Texture
Technologies Corp．，Scarsdale，NY／Stable Micro
Systems，Godalming，Surrey，UK）．

Were Victorian Fallen Women Doomed?

The Question of REINTEGRATION

Could a Victorian woman ever transform from a Fallen Woman intoa Respectable Matron?

 evaruape. Onsw, pulik woicty thans the tallon wones. lowing her so cendurz 4 ampaced alictiated ale
 wovan over topaus ber birgar shatos or wen eamy a ropewiable mae? tpoot ther a appinsoust muntor of Yichoan silion mosion, nual and

Methodology

Special Thanks

[^0]
The Common Vied

- Fallen women never reintegrated

Challenges from NY RESEARCH

- Victorian authors depicted women marrying after a sesoal fall

 har leshant
- 'Real' fallen women also married

- Fallen women were silent, pasaive vietims
- Not all Vietorian fallen women were vietims

 Ilacown
NXititivi
oximestin
minglen
mantinet

 nur mit cose

SWeries paral is an
 - Wiped tives runa rativen sheitian

- Fallen women controlled their narratives

- Reform shelters oppressed fallen women

Selected Sources

 Thie wilisen. Mopdituerw shlebeng r Boiked. 1302

Reform Shelters:

A Different Perspective - GOAL To reintegrate women, mot isolate them

Making victims into agents

-

Publishing the fallen wornan's narrative

Introduction

research poster is designed so help a compose high-quality research posters tas of their discipline.
rch posters showcase your research to a audience, thus be clear.
ie, for a moment, the poster you are while standing amongat a host of hers or idling in the writing center. This ent will impert the knowledge essential jning a research poster to sny passer-by example while maintaining interest uniqueness.

ReD Introduction should interest your and present a dear hypothesis. Explbin earch problem you are investigating and s significant. Avoid wordiness - you will reader's intereat with long explanations.

Methods

ave divided our presentation into two sections: the actual content of our and an analysis of the integral parts of a = poster, including a summary of the organization style (Introduction, as, Rerults, and Discuasion).
mments that annotate each subdivision rize the associated MRaD section - see for an explanation of the IMRaD ds.

UnD Metheds section should brie? z the methods and materials in your h. Often, these are better communieated graphs that illuatrate stteps. A clear Bien of your methods lends credibility to atex, and thus, your research.

Audience

Text Formatting

Text should be left aligned.

Be wary of large chunks of text.

Never use decorative fonts like Reavie. Ctie, or \$yg You can use flver poiead tare, bur ure a uniform ajo.

Layout

Focus on an easy-to-foliow design.

Present your content in logical order (remember, IMRaD).

Align your margins and spacing the content evenly.

Avoid clutter.

Graphics and Color

Color can be your ally or your

Make sure your colors fit within the same color scheme. Ansthetir color paiettes can be founat antine for the urtisticolly disadinatupel.

 cermis

Beware of copyright infringement. We would embed a clever remark here, but plagiarism is a serious matter.

Discussion

Resesrch posters display your project's

 points to an audience; they are not mean provide every single detal, but to convey essential information. Effective research require the following:- Analyze the type of audience viewing ye poster and customize accordingly.
- Create visually atimulating images and f emphasizing readability and coherence. - Design an easy-to-follow layout to guide audience through your data.
- Be wary of overcrowding your poster w excessive graphics or tent.

Key Tips:
Data is plural. Wrike "data are," not "data Underlining makez text look bully. Italics your poster look cleaner and whole.
Gremmerminteinesiobeth Grammar mist bad. Double check for errorz.

Use parallel lists, Le., "test hypothesis, co data, write conclusion."

Though creating a research poster can be daunting, following the IMRaD approach these guidelines can make it easier.

The IMRRaD Difcussion section should tra the conclusion of your research. First reiterate the hypothesis without 2 redundant. Clearly and quidkly state your hypothesis was supported, and w. findingr are relevant and interesting:

Title

A glance should reveal the research you' conducted and why. The key is an effecti Your sitie should be as clear as possible a include the issue and your approach to re If the audience is more general, a catchy be effective, like ourk.

Poster Presentation Tips

Practice short (2 minute) and long (10 minute) versions of your explanation.

Anticipate questions you might get and how you will answer them.

Poster Presentation Tips

Do not block or read from the poster.

Point out figures and use them in your explanation.

Summarize in 2-3 sentences.

Helpful Resources

- http://www.ncsu.edu/project/posters/

Examples with detailed strengths and weaknesses

- http://posterpresentations.com

Download poster templates

- http://brandguide.tamu.edu

Download A\&M logos and templates

Texas A\&M
Health Science Center

Make the Main Title with Large Bold Type

Your Name Here
Your Department Here
Texas A\&M Health Science Center

Before You Begin

Cnsok the requilrements for your mesting:

- Are there dimenslonal requirements for he posier? What is the slze of the spsoe jou are golicy to hove for prosenting the posior?
Doss it need for be morizontal or vartion? Does the postor noed to show the spstrsot numbery ir so, does it nead to be part of the posior tite? The absirnst number for this inmplisio is in the extrome upper let hand oorner above the tive box:

Getting Started

1. Choose apsop lotup" under the "Fis ${ }^{2}$ mpwa snd ontine jour poster slze. Tiploal postors are 38×43 or 40×58, but they osen be ary size up to 40 inshes for the shor maximum widit is 68 inohes.
2. Unser the "Format" menu ohoose "Esoxgrouna: 4. Belsot a oolior from the drop-down mani, or ohoose - Fill Effeots. " whioh anters mary optons suoh as gradients and testares.

Text Boxes

Eve surt fo make fest large and essy io resd. Weadings for theso loxt miooks aro 60point bold, and the pody lext is a2-point bold. The body fext osn be boid or normat, 22-point bolid. the body foxt osn be boid or norma. depsosing on the lext you use and the shount of lext in your posist. All the inctin ins postor is set up whin white
feat miooks, so when you replese this text whe yours, the fext blooks, so when you repleoe this text whe yours, the
blopk will expend io tit the length of your lext All me iext
 Blisoks in tivs ismplato osn be modrin
ksep a unform widh for ssob sox.
The fext boxes on this stonoll are formatted with a whits hic, so outine and a biosk shedow. A varipty of other so outing and a Biabk shosow. Wi variti, of oher of the oombinstions oen be ohosen. Mavo sure the oolor
text oontrasts with the box oolor for sssy resding.

More about Text Boxes

Rightoliok within the fext bor and salpot the aFormat poxt Eox" opton from the popup window. selast the teb that soys "Pext Eox." in in's whdow you oos sat infernal margins. These boxes bsve a harinon (5) margis around the oottom and sides, and a silinty smaller margin on the top.
Another opton within the "Formst Bxt Box- disiog box is inxt rofation. there is more about rotetiad fext in ite iegend of the graph sniow.
Another way to get to the "Format Bxt" box is by onopsing "Format" on the top menu bar. Under the "Format" manu an other halighil formatting fosturss.

-

Tables and Photographs

Boles, Rustrations and photographs ose be piosod to metoh the foxt blooks. Drsw a reotengie sox uhere you want to insert the praphio eliement. Be sure to inoluse foure legends. Lins up text blooks and figures whenever possilite, and fry to maintain oven spooing betweon blooks:

Hustrations, expoolaily soais of insthitions, oen be trioky to inoorporste into the poster with no saokground blook inolused. it is Dest to use ene Nies, insarting them using the "insert File oommend. it you use git or Joeg fies you must oustomizo your drawing tool par in arder io use en atet Trensporent Color" took to sot the sookground fo the oolior of what is sotind the Inustration.

Whan importing phofographs from another program, make surs thay are st lessi as large as you want tham to aspest on your positer. Eniarging tou want phom to appear on your posiot. Ein using the sosiling fosture in PowerPoint does not work well the imsoe might look fine on your oompular sorven, but if will not tiways print woil.

References

Other Tips

1. Ee surs to have the formsting and drewing fool boxes furned on These are of indispenssbie nelp in oresting posters.

- Oo under the "Dols" manu and seloot "Cusiomize, then saisot the "Boiliser" fat and make sure the drawing and formatting hools are ohsoked.

2. Buinats and solentino sjmbols are sometimes dimout to print.

- It is advisabie to use Ariai or Nelivatios fonts when having to use a lot of solentino spmbols, and the "Ajmbols" fonit for spalial oharsolprs that are not inoluded in either of the two text fonts.
Bultets sometmes transiato as difersat sjmbols ontween the oompuler and the prisier. Even it they look right on sorsen, they somptimes "translate" wrong in the printing stape. The sestway io svoid evis
 ohange tham to bulets ister. Bounds strange, but works:

Conclusion

Whan you neve all your alsments on the poster, iline tham up and make sure they he.
Make sare the speoes betweso your fext, plotures and other nimonts aro visusity belanosd. With he "Uing" isol, draw guldeilines is oondrasting oolors the longth and wioth of your poster. Hold down the anir ksy whils drawing them to kesp lines strolght. Use these gulsollines to line up fer oipments of your posier. Whes you are finished. Just deivio them.

direst soites

For More Help...

Visit our website o call us to schedule an appointment.

We can help you

 with the construction, design, and style o your research poster.
UNIVERSITY WRITING CENTER

 WE'LL HELP YOU FIND THE write WORDSEvans Library \& West Campus Library
writingcenter.tamu.edu

©TM UNIVERSITY WRITING CENTER

Design Process

Design process can be applied to:

- New curriculum development
 - Product design
 Problem solving

References:

- Nigel Cross, Engineering Design Methods: Strategies for Product Design, $2^{\text {nd }}$ ed. Wiley, 1994.
- Edward Lumsdaine and Monika Lumsdaine, Creative Problem Solving: Thinking Skills for a Changing World, Mc Graw-Hill, 1995.

Engineering Product Design

Examples

- Lack of manufacturing talents in Texas
- Cheating in exam
- Computer virus
- Traffic jam during peak hours
- Universal tool for metric and imperial fasteners
- Changing watch battery
- Etc ...

More examples:

- Find a solution for student cheating in exam
- Design new robot for state competition
- How to motivate students for STEM?
- A product to replace/block cell phone
- I want to improve my GPA
- Modify my program to attract underrepresented students

Step 1: Identify need or problem "Find a solution for student cheating in exams"

Step 1b: Clarify objectives

- Test type: quiz, midterm, final, entrance exam, national exam...
- Result: preventive solution, disciplinary or punishing procedure...

Step 2: Research criteria and constraints

Obtain specific/relevant information...

- Exam types: final, entrance exam, quiz...
- No large classroom available
- Cannot change schedule
- Limited funding to implement

Step 3: Search for possible solutions (Ideation)

Brainstorming: look for lots of ideas from a group
\square Synectics: find possible solution using analogies
Removing mental block: Find new direction, think outside of a box
\square Morphological chart: idea for functional requirement
\square Fishbone diagram: cause and effect

Step 3: Search for possible solutions (Ideation)

Brainstorming: look for lots of ideas from a group

- Quantity, not quality
- No criticism
- Avoid prejudice
- Combining ideas

Step 3: Search for possible solutions (Ideation)

Synectics: find possible solution using analogies

- Similar issues from different fields
- Solutions to similar problems

Step 3: Ideation
"Find a solution for student cheating Synectics in scheduled final exams"

THE

hitp://waterfordwhispersnews.com/2017/12/08/irelands-
final-dole-cheat-to-be-publicly-executed-later-today/

Step 3: Search for possible solutions (Ideation)

\square Removing mental block: Find new direction, think outside of a box

- Ignore constraints
- No criticism

Step 3: Search for possible solutions (Ideation)

Morphological chart for chair design

Chair components	Physical solutions - S_{k}				
	1	2	3	4	5
Seat			$S_{3}-\text { Rectangle }$		
Back	$S_{6}-\text { Square }$	$S_{\text {T }} \text { Trapezoidal_a }$	$S_{8} \text { - Trapezoidal_b }$		$S_{10}-\text { Ellipsoidal }$
Armrest			$S_{13}-" J " \text { shape }$	$S_{14} \text { - Ellipsoidal }$	
Stand	$S_{16}-\text { Straight_a }$	$S_{17}-\text { Straight_ }$	$S_{18}-\text { Round }$	$S_{19}-\text { Slant_a }^{2}$	$\begin{aligned} & \mid \\ & S_{20}-\text { Slant_申 } 4 \end{aligned}$

Step 3: Search for possible solutions (Ideation)

\square Fishbone diagram: cause and effect

baronerocks.com

Step 4: Select the best solution [satisfying all constraints/criteria]

- Top-down instruction
- Weighted criteria

Step 5: Construct prototype

- Draft curriculum
- Fabricate nonfunctional prototype
- Manufacture functional model
- Sketch of solution

Step 6: Test prototype

- Preliminary functional /reliability tests

Survey
Professional feedback

- Alpha vs beta tests

Step 7: Present solution/result

- Submit report
- Presentation of concept
- Show a physical /working model

Step 7b: Implement solution/result

- Contingency plan
- Regular feedback. Collect data.

Step 8: Redesign. Modification. Justification.

- Cut cost
- Simplify device
- Automate steps
- Change rules
- Increase effectiveness
- Differentiate Musts vs Wants
- Consider different market/culture

Examples of exam cheating

https://www.youtube.com/watch?v= 5GLG1CODCs

Solutions for exam cheating

Program outcomes (1/2):

Design and fabricate a part/system to enhance a Stirling engine

1) Show steps of Design Process
2) Present your final design

- Group
- Technical drawing: multiple views+ dimensions
- Manufacturing plan
- Schedule
- Expected results
 goldberg-machines-and-the-engineering-design-process/

Program outcomes (1/2):
Design and fabricate a part/system to enhance a Stirling engine

Manufacturing training and facility 1) Traditional manufacturing
2) Computer-aided manufacturing
3) Laser machining
4) $3 D$ printing
5) Surface engineering

Question from the external evaluator:

- Manufacturing and other STEM concepts, state curriculum objectives that will be addressed?
- List of materials and equipment needed and how they will be acquired an maintained?
- Support that the teacher will need from RET team, school administration, or industry
- Reflection component for success after the project is implemented
- How students involve in the various stages of the process, from discovery to evolution?
- How the students' designs, process approaches and products will be assessed?

Pen Holder with Logo Engraved

The steps described allow you to practice 'Pen Holder' design shown below. The pen holder has two parts, namely the base with a logo/design engraved on it and a press-fit structure on the base to hold a pen. The instructions require the use of Autodesk Fusion 360, which can be downloaded for free at https://www.autodesk.com/products/fusion-360/overview for students. This material is divided into two sections; section one will detail the steps to create the CAD model of the pen holder in Autodesk Fusion 360 and section 2 will focus of creating drawings, section views etc. and dimensioning them in Autodesk Fusion 360.

Section 1: CAD Model of Pen Holder.

This material is divided into three parts; modelling the base, modelling the pen holder and assembly of the parts.

The basic layout of the Autodesk Fusion 360 is shown below.

Fig 1. Source: CADCAMCAE Works, Autodesk Fusion 360 Book.
In the steps below; when it is mentioned to select the $X-Y$ plane or similar instructions are given, use the view cube on the top right of the screen to manipulate the sketch plane appropriately.

In Autodesk Fusion 360, there are a lot of single key shortcuts that significantly reduce sketching time. Some of the shortcuts are mentioned throughout the instructions, but, from increased use you would gain a better understanding of the shortcuts.

Fig. 2: Completed picture of the Base of Pen Holder.

Step 2: Create a new Sketch Plane. Click the Sketch icon and pick the XY (Horizontal Plane).	
Step 3: Create a 2-point rectangle. On the Sketch drop down, click on rectangle. And in the following menu, pick 2-point rectangle.	
Step 4: Click on the sketch drop down menu and select 'Sketch Dimensions' or press the letter D to dimension the sketch. Dimensions of the rectangle are $2.9^{\prime \prime} \times 2.9^{\prime \prime}$.	

Step 5: Stop Sketch. Click on the Stop Sketch icon on the right side of the ribbon menu.	
Step 6: Extrude. Click on extrude button (next to the Sketch button). Select the Rectangle dimensioned and dimension the height at 0.7". After Clicking the extrude button, click on the sketch of the rectangle. The rectangle bull turn blue and you can type in the extrude height.	After clicking extrude, click on the rectangle as shown below.
Creating the Hole	
Step 7: Select the front surface of the block and click sketch when the required surface is blue.	

The block with the hole.
Step 11: Select the bottom plane (as
highlighted) and click sketch when
the required plane is blue.

Step 16: Select the front surface of the block and click sketch when the required surface is blue.	
Step 17: Select 'Insert' and select 'Insert SVG'. A File Selection window will be prompted. Select the .svg file with the desired logo.	
Step 18: Orient the logo as desired using the 'control' provided.	

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Tip: Use the arrows and the control options to orient the logo as desired.	
Step 19: Select 'Stop Sketch' and select 'Extrude'. Select the inner portions of your logo as shown. Set the depth to ' -0.025 '.	
The Base of the pen holder should look similar to the block shown in Fig. 2.	

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Part 2: Pen Holder.

Fig. 3: Completed picture of the pen holder.

Sketching the Profile.	
Create a new model by selecting file, then new design.	

Step 4: Your profile should look similar to the one shown in the diagram. Ignore the Chamfer in Fig. X .	
Step 5: Select 'Create' and then select 'Revolve'. Select the sketch as the profile and the horizontal line as the Axis. When the correct Preview is shown, click OK.	
Step 6: Click Modify, and select Chamfer. Select the edges as shown and set the distance to $0.025^{\prime \prime}$. When done, select OK.	
Step 7: Select 'Modify' and then select 'Chamfer'.	

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Part 3: Assembly.

Fig. 4: Completed picture of the pen holder assembly.

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Step 3: Right Click on the pen holder and select move. Using the controls, manipulate the bottom of the pen holder NEAR the hole in the base.	
Step 3.A: Right Click on the pen holder to get more move options.	
Step 3.B: You can reorient and view from different views while bringing the pen holder close to the base and the hole.	

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Step 4: In the Assemble menu, select Joint.	
Step 5: Select the stem of the pen holder as the Component 1. For Component 2, select the hole (not the edge of the hole but when the cursor hovers around the hole a cylinder is generated).	
Step 6: The insert depth is $0.5^{\prime \prime}$, which is Offset about the z-axis.	

Section 2: Drawings of the parts.

In this section, the steps to create the drawings of the parts are shows. In part 1, the steps to make the front, side and top views, and dimensioning them are explained. In part 2, creating section view of the parts are shown. In part 3, steps to make auxiliary views are explained. Note, the drawings generated are $3^{\text {rd }}$ angle projections, which are default standards of ASME.

Part 1: Front, top and side views.

| Steps to generate drawings for the base. |
| :--- | :--- | :--- |
| Step 1: Open the base of the pen holder in |
| Autodesk Fusion 360. |

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Step 3: In the 'Create Drawing', set the units as inches and click OK. Step 4: A new tab will be opened with the drawing template. Place the front view of the block at approximately the middle of the sketch, and make a left click.	
Step 5: In the 'Drawing View' prompt, select the scale as '1.25:1' and the style as 'View Visible Edges'. And press OK.	

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung
Step 6: From the 'Drawing Views' drop down
menu, select projected view.
Step 7: Bring the cursor to the front view,
and it will be highlighted in a blue outline.
Click the front view.
Step 8: Drag the cursor to the right and you
will see the side view of the block. Place the
side vies at a reasonable distance from the
front view and make a left click.

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung
Step 9: When you bring the cursor to the
bottom of the front view, you will see the
bottom view of the block. Click the left
mouse button at the appropriate position.
Step 10.A.: Repeat step 9 for left and top
view. When done, press Escape. Note, for
more space, click on the title box and press
Delete.

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung
Step 11: Select Dimension button to
dimension the parts.
Step 12. B: Drag out the dimension and click
on the left button.
select the correct edge, left click.
Step 14: To dimension the hole, hover
around the circle for the program to detect
the feature. Then click the left button, drag
out the dimension and the click the left
button.
Step 16: Bring the cursor to the other edge,
Step 15: To generate the dimension of the
as shown in the picture. When the green
square is visible, left click.
and when you see the outer edge in blue, left
click. Drag out the dimension generated and
left click.

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Step 19: Select the fillet as the center point.	Midps
Step 20: Drag out the boundary size and left click.	
Step 21: When the section is generated, drag out the section and left click.	
Step 22: Change the scale to ' $3: 1$ ', 'View Visible and Hidden Edges' and click OK.	
Step 23: dimension the fillet radius.	
Step 25: Dimension the fillet edges as shown (refer to step 15, 16 and 17).	

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Step 26: In order to dimension the depth of the engraving, zoom into the left side view as shown.	
Step 27: Select the inner edge as shown.	
Step 28: Select the outer edge as shown.	

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Step 28: When the dimension is generated, drag out the cursor and click.	
The drawings of the base should look similar to this picture.	
Drawing of the pen holder is also generated.	

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Part 2: Section Views.

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung
Step 6: Place the cursor on the
front view and when it is
highlighted, click it.
Step 7 Section the view as shown
in the diagram. Press Enter when
sections as shown.
recommender
featureless solid features.

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Part 3: Auxiliary View.

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung
To create the geometry,
instead of creating a fillet,
draw a triangle as shown, and
create the sweep.

MMET 380：Computer Aided Manufacturing
Dr．Wayne Hung

Step 2：Select＇Look At＇from the view command as shown．	
Step 3：Once，you select look at，you will see your part as shown．	（8）自 般 Q＠•回•比•田•

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

Step 4: From the part hierarchy, select 'Named Views'.	
Step 5: Right click on named views and select 'New Named View'. Step 6: On 'NamedView'; double click and rename as 'Auxiliary View'.	

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung

MMET 380: Computer Aided Manufacturing
Dr. Wayne Hung
Step 11: Dimension the parts
as necessary.

LAB \#2: Metrology-1

I. Objective: To be familiar with basic dimension and form measurement. Part 2 of the exercise will cover data collection in production mode.

II. Tools and Equipment:

- 8 rulers
- 2 Vernier calipers
- 6 dial calipers
- 20 Lego blocks
- 16 washers
- $\quad 10$ plastic tubes
- 6 inch-micrometers with stands
- 2 metric micrometers with stands
- 1 set of inch-micrometer with box
- 1 stand for 1-2 inch micrometer
- 2 dial indicators and bases
- 2 height gages

Fig L2.1: Ruler

Fig L2.4: Dial indicator

Fig L2.7: Lego block

Fig. L2.2: Caliper

Fig. L2.5: Indicator and base

Fig. L2.3. Micrometer

Fig. L2.6: Height gage

Fig. L2.8: Washers

III. Dimension Measurement

Your TAs will demonstrate how to use each instrument. You will measure and compare dimensions of a Lego block, diameter and thickness of washer.

III.1. Length measurement

Select a Lego block and measure the same length or width using different instruments. Notice possible differences in your measurement.

Table L2.1. Length of a Lego block.

Measurement $\#$	Ruler (inch)	Height Gage (inch)	Dial Caliper (inch)	Micrometer (inch)
1				
2				

III.2. Width measurement

An indicator is used to measure either dimension or relative deviation from a dimension. This is applied to measure dimension or shape changes (form measurement is in next session).

Measure the width of the Lego block at two different locations. Practice with a metric equipment if possible, otherwise you might need to convert the reading from inch to millimeter.

Table L2.2. Width of a Lego block.

Measurement $\#$	Dial caliper (mm)	Vernier caliper (mm)	Micrometer $($ inch $)$	Metric micrometer (mm)
1				
2				

Note: 1 inch $=25.4 \mathrm{~mm}$

IV. Form Measurement

IV.1. Parallelism

Select a Lego block and measure parallelism of two opposite surfaces A and B using a dial indicator. The largest deviation of the two surfaces is the parallelism of those particular surfaces.

Sketch the set up and label the instrument, show direction of motion with an arrow.
Block parallelism: \qquad inch

IV.2. Roundness

Use caliper/micrometer to measure 4 different diameters around the top of a plastic test tube. The largest radial deviation is the roundness of that particular tube.
Notes:

- Measure diameter of the same top circle to avoid error due to the taper angle.
- Apply minimum pressure to avoid deforming the tube.
- Need more measurements to improve the roundness accuracy.

Object	\#	Diameter (inch)
	1	
	2	
	3	
	4	

Roundness $=\frac{\text { Max diameter }- \text { Min diameter }}{2}=$ \qquad inch (4 decimal digits)

V. Assessment

Measure dimensions of a washer (Fig. L2.8) at marked locations using different instruments.

Washer code:	Thickness (inch)	Outside diameter (inch)
Caliper $(\pm 0.001 \mathrm{in})$		
Micrometer $(\pm 0.000,5 \mathrm{in})$		

10 pt for each correct answer +10 pt for attendance $=50 \mathrm{pt}$

LAB \#3: Metrology-2

I. Objective: To be familiar with data collection technique for a group of parts in mass production mode.

II. Tools and Equipment:

- 8 dial calipers
- 2 indicators and stands
- 2 sets of plug gages (0.5 in go/no-go)
- 2 sets of ring gages (0.5 in go/no-go)
- 2 ten-holder sets
- 2 pen-base sets

(a)

(b)

(c)

(d)

Fig L3.1:
a) Profile projector, b) Coordinate measuring machine, c) Form measuring system, and d) Vision measuring system

Fig L3.2:
a) Go/No-go plugs ($0.500-0.510 \mathrm{in}$), b) Go/No-go rings ($0.487-0.497 \mathrm{in}$), c) pen-base and pen-holder set

III. Direct Measurement: Caliper

Table L3.1. Caliper measurement of a pen-holder

Part code:	Measurement \#1 (inch)	Measurement \#2 (inch)
Outside diameter (Top)		
Inside diameter (Top)		
Hole depth		

Table L3.2. Caliper measurement of a pen-base at four corners.

Part code:	$\underset{\text { (inch) }}{\text { Measurement }}$ \#1 (inch)	Measurement \#2 (inch)	$\begin{aligned} & \text { Measurement \#3 } \\ & \text { (inch) } \end{aligned}$	Measurement \#4 (inch)
Thickness				

IV. Direct Measurement: Variation

IV.1. Use of Go/No-go gages

- Use Go/No-go gages to verify the tolerances of provided parts. Do not force parts into the precision gages.
- Use plug gages ($\$ 0.500-0.510 \mathrm{in}$) for holes.
- Use ring gages ($\phi 0.487-0.497 \mathrm{in}$) for cylinders.
- Write a check mark $(\sqrt{ })$ if the part passes the Go/No-go tests, or a cross (X) otherwise.

Table L3.3. Go/No-go test (delete parts that you don't work with)

	A	B	C	D	E	F	G	H	I	J
	K	L	M	N	O	P	Q	R	S	T
Pen-holder (Bottom)										
Pen-base (hole diameter)										

IV.1. Use of Dial Indicator

- The design thickness of the pen-base is 0.700 ± 0.010 inch. Set a standard height of 0.7 inch using precision gage blocks.
- Verify the indicator stem is in vertical position, and then zero the indicator at 0.7 inch height.
- Measure deviation of each pen-base thickness with the dial indicator near the block center. Plot the deviation (from the average of 0.7 inch) of each part in the chart below.

Fig. L3.3. Average and range chart (delete parts that you don't work with)

V. Indirect Measurement: Dimension and Form

- Design dimensions:
- hole diameter $\phi 0.5$ in
- hole center $\mathrm{X}=\mathrm{Y}=0.600 \pm 0.010$ in
- hole roundness 0.0005 in allowance
- You will measure and calculate, either manually or using a program: hole diameter, coordinates of hole center, and its roundness on a pen-base.
- Recall that roundness is the radial zone width containing all points on a circle.
- Use the same part with different equipment to understand pro's and con's of each instrument.

Pen-base code: \qquad .

Table L3.4. Hole center position and hole roundness

Instrument	X (in)	Y (in)	Diameter (in)	Roundness (in)
Caliper				
Profile Projector				
CMM				
Vision System				

V.1. Use of Profile Projector

Fig. L3.4a. Mitutoyo PH-A14 profile projector and QM Data 200 controller.

Fig. L3.4b. Mitutoyo PH-A14 profile projector.
Measure hole position, hole size and hole diameter using Mitutoyo profile projector.

1) Turn the system on
2) Set units
a) Press Menu2 (row 7, column 6). Choose \#8.
b) Use Up or Down cursor (last column) to highlight dimension
c) Use Left or Right Cursor (last column) to select inch or mm.
d) Accept new change by pressing F5.
3) Align protractor wheel at some angle for easy of reading of the cross-hair position
4) Position a pen-base with hole position at lower left on vise (upper right on screen).
5) Focus so that machining marks are visible
6) Set new local coordinate system
a) Press XY coordinate (row 3, column 1), then 5 on numeric pad. Observe the blinking dot on the screen.
b) Use X or Y wheel, position the cross-hair to upper right corner of the part shadow, press LOAD and then F5 to complete. The current coordinates of the part origin now should be $x=0$, and $y=0$ on screen.
7) Measure the circle. You will measure at least 4 points on the circle.
a) Press Circle (row 2, column 4)
b) Position the cross-hair to point 1 on the circle, press LOAD
c) Repeat for point 2, press LOAD
d) Repeat for point 3, press LOAD
e) Repeat for point 4, press LOAD
f)
g) When done, press F5
8) Read and copy the hole center coordinates (X,Y), hole diameter D, and roundness (F2) in Table 3.4.

Fig. L3.5. a) Mitutoyo Strato-Apex CMM, b) setup, and c) CMM control box
Measure hole position, hole size and hole roundness using Mitutoyo CMM.
Your TA have loaded the program, set unit, probe, and prepared the fixture for a pen-base.

Procedure:

If the computer is already on, then proceeds to step \#7

1) Verify that compress air is on, maximum pressure of 55 psi .
2) Log in to the computer system using your TAMU Net ID.
3) Turn the power on. The switch is at the lower left corner of the granite base.
4) Confirm on control box (Fig. L3.5c): The LED window reads "Abs 0" (absolute zero), and the green light on Start button is on.
5) Press the Start button. The probe will move to the home position (upper left corner)
6) Use the X-Y joystick on the control box, move the probe away from its home position and toward you.
---------- Start here if the computer and system are on and ready \qquad
7) From the computer monitor, click on the icon M to open the Cosmo program.
8) Click OK
9) Highlight the program 181 pen base
10) From the top row, click the icon CMM/Repeat mode.

11) Secure a pen-base (Fig. L3.5b)

- Insert the hole of a pen-base into the pin A, the grooves should face downward
- Rotate the part counter clockwise until it stops by the screw B
- Finger tighten the screw B clockwise onto the part. Click OK.

12) From a new window "GEOPAK: 181 pen-base", verify inch mode, click OK.
13) The probe will move to 4 points on one edge to set the y-axis and another 4 points on the other edge to set the x -axis; it then moves to 6 points inside the hole to measure its relevant dimensions. The probe will move away for the next part.
14) Record the coordinate of hole center, hole diameter, and hole roundness.
15) Unclamp the part, make sure you do not crash the probe.
16) Done!

17) Click File/Exit to log out or ready for the next measurement.

NOTES: If your part is positioned wrongly, let the system detect error and it will stop itself.
a) An error message shows on monitor, click OK to acknowledge it.
b) From the list of next action items, choose Abort part program, then OK , then OK .
c) Use the joy sticks on control box (Fig. L3.5.c)

- Push forward the left Z joy stick to bring the probe up (go slow at the beginning)
- Tilt the X-Y joy stick to move the probe away from the part
d) Reposition the part as shown in Fig L3.5.b
e) From top row, click icon Execute Again
V.3. Use of Form Measuring System (Demonstration)

Fig. L3.6. a) Mitutoyo RA-120 system, and b) Control panel.
Roundness demonstration (Fig. L3.6)

1) Secure a plug gage (or equivalence) on the chuck by slightly tightening the 3 jaws. Do not adjust 4 leveling/centering screws below the chuck.
2) Verify outside diameter set up.
3) Position the probe using Z and X knobs. Slowly move the probe in X direction to touch the part surface.
4) Press the RNDNES roundness button (Row 1) on control panel.
5) Slowly increase the probe contact pressure by moving the probe positioner and then fine tune using the SELECT/ENT wheel until the pressure bar is at center of the pressure gage window.
6) Press START button. The chuck will rotate while data is collected.
7) View the graphic display of roundness and read the roundness value.
8) Disengage the probe away from the part using the X-knob.

V.4. Use of Vision System

We will measure hole position and roundness of a pen-base.

INITIAL SETUP

1) Turn computer on, wait till it finishes booting.
2) Switch the Quick Scope controller on. This must be done after computer is on.
3) Click QSPAK MSEV3.0 icon on Desktop.
4) Zero the stage by clicking OK .
5) Turn the X / Y stage dials to move the stage to left, right, font and back as shown on the monitor. Click OK in between.
6) See Program Run page on monitor. If not, repeat the zeroing steps.
7) Select File, choose 181 Pen Base.pp file, click Run, initialize OK.

Fig. L3.7 Mitutoyo vision system

MEASURING PROCEDURE

(a) (b)

(d)

(g)
a) Define origin ($1^{\text {st }}$ point on x, y axes)
b) Define x-axis ($2^{\text {nd }}$ point on x axis)
c) Define y-axis
d) Collect points on circle, group 1
e) Collect points on circle, group 2
f) Collect points on circle, group 3

Program outputs: Center position relative to part origin, hole size, and hole roundness.

1) Position a pen-base on stage: bottom up, with hole at lower left, aligning the edges to marked lines on the stage. Be careful and do not scratch the glass stage or hit the lens.
2) Focus and set light (below the stage) for best contrast
3) Using the stage dials, align the shadow with green cross-lines, use mouse to click and define the part origin. Program will start running.
4) Use the X-dial, move to $\sim x=0.5$, click on the part

5) Follow the screen instruction according to steps c-f above. Use X / Y dials and move the stages until the red
cross-lines turn green, then press foot pad or click DATA.
6) If the system fails to detect points on an edge, choose Manual from the Error window, use mouse to click and define ~ 5 points on the edge, then click Continue.
7) Copy results (hole center , hole diameter, and hole roundness) into Table 3.4. Note: "NG" is "no good."

V.5. Group discussion
a) Highlight advantages of each instrument for dimensional /form measurement.
b) Repeat for disadvantages.
c) Discuss about instrument selection and effective usage of these instruments.

VI. Assessment

- Clicker quiz
- Filled tables

LAB \#4: Machining

I. Objectives
II. Tools and consumables
III. Saw operation: tooling and task
IV. Drill operation: tooling and task
V. Lathe operation: tooling and task
VI. Mill operation: tooling and task
VII. Grind operation: tooling and task
I. Objective: To be familiar with basic machining operations. You will learn basic machine operation in this lab and will fabricate sets of parts in the next lab exercise.

II. Tools, equipment and consumables

Sawing	- 1 Al rod ($20^{\prime \prime}$ long, $\phi 0.75^{\prime \prime}$) - 8 Al bar (3.0 " x $0.75^{\prime \prime}$) - Horizontal and vertical saw	- 1 marker - 2 dial calipers - 2 files
Drilling/tapping Die threading, deburring	- 2 center drills - 2 twist drills \#Q ($\varnothing 0.332$ ") for $\varnothing 3 / 8-24$ threads - 2 deburring tools (counter sinker) - 3 Al blocks ($3 \times 3 \times 0.75$ ")	- 1 marker - 2 dial calipers - 2 files - Drill and drill/mill machines - 2 die sets for $\varnothing 3 / 8$-24 threads
Lathe	- 2 Al rod ($10^{\prime \prime}$ long, $\phi 0.75^{\prime \prime}$) - 2 center drills - 2 twist drills ($\phi 0.5^{\prime \prime}$) - 2 deburring tools (counter sinker) - 3 Al blocks ($3 \times 3 \times 0.75$ ")	- 1 marker - 2 dial calipers - 2 files - 2 lathes with collets - Preset tools (turn, face, knurl, groove)
Milling	- 4 Al blocks ($3 \times 3 \times 0.75^{\prime \prime}$) - Horizontal and vertical mill - 4 " face milling cutter - 4" peripheral milling cutter - 2 sets of parallel bars	- 1 marker - 2 dial calipers - 2 files - 2 rubber mallets - 1 combination square
Grinding	- Steel rod for cylindrical grinder - Steel block for surface grinder	- Surface grinder - Cylindrical grinder

Deburring tools and tool holder (for edge and hole)

Counter sinking and hole deburring tool

Deburring tool (for hole)

Deburring files

III. Sawing operation:

Fig. L4.1. Jet vertical band saw VBS1408

Jet horizontal band saw J3410

Start with an aluminum rod $\emptyset 3 / 4$ inch, mark and saw to 4.0 inch long.
Table L4.1. Process plan for sawing round rods. Save the cut rods for next week.

Step	Machine	Process
1	Horizontal saw	Mark the cutting line $(4.000-4.125$ inch $)$ Claim rod
2	Horizontal saw	Saw rod to length
3	Horizontal saw	Advance rod and repeat
4		Deburr Verify the part dimension $(\varnothing 0.75 \times 4.0$ in minimum $)$

Start with an aluminum bar mark and saw to $3.0 \times 6.0 \times 0.75$ inch.
Table L4.2. Process plan for sawing rectangular bars. Save the cut parts for next week.

Step	Machine	Process
1	Horizontal /vertical saw	Mark 6 inch cut Claim bar
2	Horizontal /vertical saw	Saw bar to length
3	Horizontal /vertical saw	Advance bar and repeat
4		Deburr Verify the part dimensions (3.0 wide, 6.0 long, 0.750 in thick)

III. Drilling, tapping, die threading operations:

Fig. L4.3 Tapping tools for internal threads

Fig. L4.4. Jet Drill/Mill JMD 18

Die threading tools for external threads

Fig. L4.5: Details of the pen-base.

Table L6.3. Process plan for drilling and tapping. Use practice workpieces.

Step	Machine	Process
1		Mark hole location Adjust drill fixture. Clamp part.
2	Drill	Mount a center drill. Drill center hole. Repeat for others
3	Drill	Mount the drill Q ($\phi 0.332$ " drill). Drill through hole. Repeat for others
4	Drill	Mount a countersink tool. Deburr hole both sides. Repeat for others
5	Tap	Clamp the part on a vise, cut the internal threads with a tapping tool for ϕ $3 / 8-24$ threads

Notes:

- Use a smaller drill of $\varnothing 0.322$ inch for the $\phi 3 / 8$ (0.372 inch) internal threads.
- Hole deburring can be done manually with a countersink tool.

IV. Lathe operation:

Fig. L4.5. Knurling tool

Fig. L4.7. Part off/grooving tool

Fig. L4.9. A live (rotate-able) center at tailstock

Fig. L4.6. Turning/facing tool.

Fig. L4.8. Fixed center-drill and chuck (at tailstock)

Fig. L4.10. Fixed drill and chuck (at tailstock)

Fig. L4.11. Jet GH1440 lathe

Jet GH1340 lathe.

You will partially fabricate set of pen holder in this lab exercise. The details are shown below

Fig L4.12. The pen-holder (left) and final assembly (right).

Fig. L4.13. Details of pen-holder.

Start with an aluminum rod $\emptyset 3 / 4$ in x 4 in long, face and drill operations.
Table L4.4. Partial process plan for a pen-holder.

Step	Machine	Process
1	Lathe	Claim rod, ~ 1 inch protrusion
2	Lathe	Facing right end
3	Lathe	Center drill right end
4	Lathe	Drill right end to $\phi 0.332 \times 1.25^{\prime \prime}$ deep
5		Hand deburr with a countersink tool

V. Mill operation

Fig. L4.14. Parallel bars (to raise a workpiece)

Fig. L4.15. Cutters for vertical milling machine.

Fig. L4.16. Cutters for horizontal milling machine.

Fig. L4.17. Sharp VH25 horizontal milling machine

Jet JTM 9x42 inch vertical milling machine

Fig. L4.18. An indexing head. Twenty revolutions of the dial A will rotate the chuck B by 180°.
You will partially fabricate set of pen-bases in this lab exercise. The details are shown below.

Fig. L4.19. Details of pen-base.

Fig L4.20. The pen-base (left) and final assembly (right).
Start with sawed aluminum block $3.0 \times 6.0 \times 0.75$ inch, mill both sides to $2.9 \times 6.0 \times 0.75$ inch
Table L4.5. Partial process plan for a pen-base.

Step	Machine	Process
1	Mill	Claim a block on 3×6 in ${ }^{2}$ area Mill the $1^{\text {st }}$ side
2	Mill	Unclamp, clean chips, rotate block 180°, re-clamp Mill the $2^{\text {nd }}$ side in several passes.
3	Mill	When the milled width is 2.900 ± 0.010, unclamp and remove part.
4		Deburr with a file

VI. Grind operation:

Fig L4.21. Clausing CGS 818H surface grinder

SukperTec G20P cylindrical grinder

Your TA will demonstrate the grinding processes.

LAB \#8: Stamping

I. Objectives: To be familiar with basic sheet metal operations; to integrate sheet metal process with welding process to fabricate a simple product.

II. Tools and Equipment:

- 1 Jet shear/brake/role machine
- 1 National shear and brake machines
- 8 rulers
- 1 Piranha P50 IonWorker
- 1 Miller SSW-2020ATT resistance spot welder
- $\quad 16$ steel sheets per section ($10 \times 2.75 \mathrm{x}$ 0.019 ", 26-gage)
- 8 protractors
- 2 pliers
- Markers, different color spray paints
- 1 quick dry while caulk
- Safety gadgets: safety goggles, leather shoes (to work in welding lab), ear plugs

Fig. L8.1a: Jet shear/brake/roll combination

Fig. L8.1a: Piranha P50 IronWorker system

Fig. L8.1c: Resistance spot welder Miller SSW2020ATT

Fig. L8.1d: National shearing machine

Fig. L8.1e: National brake for bending

III. Task:

We will fabricate a star using steel sheets (Fig. L8.2).

Fig. L8.2. A sheet-metal 3D star

NOTES:

- Familiar with basic sheet metal processes: marking, shearing, folding/bending, hemming, and spot welding.
- Test on a dummy blank to verify the optimal set up before welding your workpiece.
- Beware of sheet spring back after bending (sheet returns partially toward original position). A slightly overbending and accurate positioning would help.

Fig. L8.3: Layout for the star. All dimensions are in inches.

Procedure to fabricate the 3D star:

1. Shear a steel sheet to approximately $10 \times 2.75 \mathrm{in}^{2}$.
2. Draw the layout of a branch using compass, protractor, and ruler (Fig. L8.3). Repeat for 4 other branches.
3. Shear all 5 branches along their perimeters.
4. Slightly round the outer tips of the branches on a grinder to avoid sharp points.
5. For each branch, V-bend 90° along the main diagonal, and 55° along the shorter edge (Fig. L8.4). Notice the spring back after bending.
6. Align the branches and resistance spot weld them at the overlapping portions.
7. Deburr and clean the workpiece.
8. Seal the gap with paintable caulk. Write your name inside and hand your workpiece to a TA for grading.

Fig. L8.4: A V-bent branch (1 of 5).
9. Dry the caulk and paint the star. You will collect your workpiece in the next lab session.

Due to some difficulties when aligning components of the stars during welding, you can have an option to notch a square at the tip of each of the star element. The complete project is a 3D star with a hollow star at the tip (Fig. L8.5)

Note: The finishing base of the star should lie completely on a
flat surface

Fig. L8.5: Layout for the star (option cut out at center). All dimensions are in inches.

[^0]: Frofeshor Fobert L. Fatten, Fies University Professor Joha Sutherland, University College London Profennor Helena Michie, Riow Univernity
 Rice Undergraduate Scholars Proggram
 The Britinh Library
 The Wellcome Truat Library

