Lec 3: Subtractive Processes

A. Traditional techniques

- A1. Overview and machining theory
 - A1.1 Chip formation
 - A1.2. Mechanics of machining
- A2. Processes
 - A2.1. Lathe operations
 - A2.2. Mill and drill operations
 - A2.3. Other operations
 - A2.4. Process planning
 - A2.5. Cutting tools and cutting fluids

B. Nontraditional techniques

- B1. Overview
- B2. Processes
 - B2.1. Water jet and abrasive water jet
 - B2.2. Electrochemical machining
 - B2.3. Electrical discharge machining
 - B2.4. Energy beam machining
 - B2.5. Chemical etching and photochemical etching

C. Finishing techniques

- C1. Overview C2. Processes
 - C2.1. Grinding and honing
 - C2.2. Lapping
 - C2.3. Polishing
 - C2.4. Deburring
 - C2.5. Surface treatment processes

A. Classification

CUTTING INSERTS

A. Traditional technique

A1. Theory

Orthogonal cutting

- 2D
- Straight cutting edge
- Cutting edge L cutting direction

eatandrelish.com

www.tradebit.com

https://i.ytimg.com/vi/Mn9jpql8rao/mqdefault.jpg

www.expertsmind.com

Rake angle $\alpha > 0$ $\alpha = 0$ $\alpha < 0$

A1.1. Chip formation

EFFECT OF TOOL EDGE RADIUS

Tool will small edge radius

- Has sharp but fragile cutting edge
- Removes chip by shearing as in nor operation
- Has same effective rake angle when machining at shallow depth of cut

Tool with large edge radius

- Has blunt but strong cutting edge
- Removes chip by "plowing" and rubbing at shallow depth of cut

Rnose

Has negative effective rake angle when machining at shallow depth of cut

Redge

EFFECT OF TOOL NOSE RADIUS

Tool with small nose radius:

- Has sharp but fragile cutting edge
- Produces consistent shear angle
- Tool with large nose radius:
 - Has blunt yet strong cutting edge
 - Deforms material in front and below the tool
 - Produces build up edge
 - Produces inconsistent shear angle

www.micromanufacturing.com

EFFECT OF (back) RAKE ANGLE

Tool with negative rake:

- Has blunt but strong cutting edge
- · Deforms material in front and below the tool
- Produces low shear angle

Tool with positive rake:

- Has sharp yet fragile cutting edge
- Produces high shear angle
- Produces uniform chip

A1.2. Mechanics: Merchant's circle and equation

- Orthogonal machining
- Cutting force
- Cutting power

Cutting force measurement

Piezzo-dynamometer

Cutting power

- Power
- Efficiency
- MRR
- Unit power

Material	Unit Power (HP/in ³ /min)
Hard steel	1.60
Mild steel	0.60
Cast iron	0.40
Aluminum	0.25

14

A2.1. Lathe operations

Operations related to Turning

molotilo.com

Turning analysis

Cutting speed

$$V = R\omega = R(2\pi N) = \pi DN$$

Depth of cut

$$d = \frac{D_2 - D_1}{2}$$

Feed & feedrate

Machining time

f_r: feed rate (in/min)

V: cutting speed (in/min)

R: workpiece radius (in)

- ω : angular speed (rad/s)
- N: rotation speed (rpm)
- d: depth of cut (in)
- L: length of cut (in)
- t: machining time (min)
- MRR: material removal rate (in³/min)

$$t = \frac{1}{feedrate} = \frac{1}{fN}$$
• Material removal rate
$$MRR = \left(\frac{\text{area of cut}}{\text{revolution}}\right). \text{ (area sweeping rate)} = (fd)V$$

distance

L

Flutes = teeth = cutting edges

2-flute drill

5-flute mill

A2.2. Drilling analysis

• Cutting speed

$$V = R\omega = R(2\pi N) = \pi DN$$

Feed, chip load
feed rate
$$\left(\frac{\text{in}}{\text{min}}\right) = \left(\frac{\text{in}}{\text{flute}}\right) \left(\frac{\text{flute}}{\text{rev}}\right) \left(\frac{\text{rev}}{\text{min}}\right)$$

 $f_r = fnN$

Drilling time

$$t = \frac{0.5Dtan\left(90^{\circ} - \frac{\theta}{2}\right) + d}{f_r}$$

Material removal rate $MRR = (area)(area \ sweep \ rate) = \frac{\pi D^2}{4}f_r$

A2.2. Similar processes

Hole making: 1.Center drill 2.Drill 3.Bore to size 4.Ream 5.Hone 6.Deburr

Counter bored hole for cylindrical screw head conical screw head

Counter sunk hole for

Drill smaller hole for tapping \rightarrow Use a tap drill

Thread Size	Threads Per Inch	Thread Designation	Tap Drill Size	Decimal Equiv.	Theoretical % Thread Engagement	Major Diameter (inches)	Pitch Diameter (inches)	Minor Diameter (inches)	Stress Area of Installed Fastener (sq. in.)
12	24	UNC	16	0.1770	72%		0.1889	0.171	0.0242
	28	UNF	14	0.1820	73%	0.2160	0.1928	0.177	0.0258
	32	UNEF	3/16	0.1875	70%		0.1957	0.182	0.0270
1/4	20	UNC	7	0.2010	75%		0.2175	0.196	0.0318
	28	UNF	3	0.2130	80%	0.2500	0.2268	0.211	0.0364
	32	UNEF	7/32	0.2188	77%		0.2297	0.216	0.0379
	18	UNC	F	0.2570	77%		0.2764	0.252	0.0524
	20	UN	17/64	0.2656	72%		0.2800	0.258	0.0547
5/16	24	UNF	I	0.2720	75%	0.3125	0.2854	0.267	0.0581
	28	UN	J	0.2770	77%		0.2893	0.274	0.0606
	32	UNEF	9/32	0.2813	77%		0.2922	0.279	0.0625
	16	UNC	5/16	0.3125	77%		0.3344	0.307	0.0775
	20	UN	21/64	0.3281	72%		0.3425	0.321	0.0836
3/8	24	UNF	Q	0.3320	79%	0.3750	0.3479	0.330	0.0878
	28	UN	R	0.3390	78%		0.3518	0.336	029909
	32	UNEF	11/32	0.3438	77%		0.3547	0.341	0.0932

A2.2. Milling

Milling analysis

Up milling (conventional milling)

Down milling (climb milling)

Milling analysis

- Chip load
- Speed $V = R\omega = R(2\pi N) = \pi DN$
- Feed, feed rate $f_r = fnN$
- Material removal rate

$$MRR = \left(\frac{\text{area of cut}}{\text{revolution}}\right)$$
. (area sweeping rate) = $(wd)f_r$

• Milling time
$$t = \frac{\text{distance}}{\text{feedrate}} = \frac{L+A}{f_r}$$

A2.3. Broaching

- Add features to a drilled hole
- Make non-circular hole

Formed surface

A2.4. Process plan

Step-by-step instructions to fabricate a part:

- Graphical illustration
- Tools, tool offset, tool sequence...
- Cutting speed, feed, depth of cut...
- Coolant / lubricant
- Deburring, packaging

A2.5a. Cutting tools

- □ <u>Tool failure</u>: wear, fracture, burnt...
- Tool life: machining distance, or time to replace a worn-out cutting tool

Uncoated tools

Coated tools

Crater wear (top view)

Replace tool when flank wear ≥ 0.3 mm

Flank wear (side view)

Tool materials

Selection criteria: crack resistance (toughness) hardness wear resistance chemical resistance geometry cost, etc...

- HSS (high speed steel)
- WC (tungsten carbide)
- Coated WC
- CBN (cubic boron nitride)
- Diamond

Machinery's Handbook, 29th edition

Table 13. Cutting Feeds and Speeds for Milling Stainless Steels

			End Milling						Face Milling		Slit Milling				
		HSS	HSS		Unco Cari	bated bide	Coated Carbide		Coated Carbide		Uncoated Carbide		Coated Carbide		
	Brinell	Speed	$\mathbf{f} = \text{feed} (0.001 \text{ in./tooth}), s$								s = speed (ft/min)				
Material	Hardness	(fpm)		Opt.	Avg.	Opt.	Avg.	Opt.	Avg.	Opt.	Avg.	Opt.	Avg.	Opt.	Avg.
Free-machining stainless steels (Ferritic): 430F, 430FSe	135-185	110	f s	7 30	4 80	7 305	4 780	7 420	4 1240	39 210	20 385	39 120	20 345	39 155	20 475
(Austenitic): 203EZ, 303, 303Se, 303MA, 303Pb, 303Cu, 303 Plus X (Martensitic): 416, 416Se, 416 Plus X, 420E	135-185 225-275 135-185	100 80 110	f	7 20	4 55	7 210	4 585					39 75	20 240		
420FSe, 440F, 440FSe	275-325 375-425	60 30													

Average: high speed, low feed \rightarrow high quality Optimal: low speed, high feed \rightarrow low tool wear/ cost

A2.5.b. Cutting fluid

Why

- Heat generates at shear zoneFriction at tool/chip interface
- Cutting fluid
- Coolant: water base + additives
- Lubricant: oil base + additives
- Latest technology: micromist
- Minimum fluid
- Most effective for external micromachining
- Environmental concern

³⁵ http://www.fabricatingandmetalworking.com/2013/04/feaoptimizes-cutting-processes-machining-strategies/