
RET Lec 3: Engineering Materials

- 1) Nature of material
- 2) Mechanical properties
- 3) Effect of temperature
- 4) Metals
- 5) Polymers
- 6) Material comparison
- 7) Effect on manufacturing

Engineering materials: metal, ceramic, polymer Natural materials: wood, clay, rock, bone...

Engineering materials: metal, ceramic, plastic, natural material and composites

Ranking: 10 (best)

Materials	Metal	Ceramic	Polymers	Natural
Strength (Pa, psi)	8	10	5	3
Hardness (Brinell, Rockwell, Shore)	7	10	4	2
Ductility (%)	5	1	10	6
Density (g/cm ³ , lbm/in ³)	10	6	3	1
Specific strength	3	6	8	10
Isotropy (uniformity)	7	7	9	4
Application temperature (°F, °C)	8	10	6	23

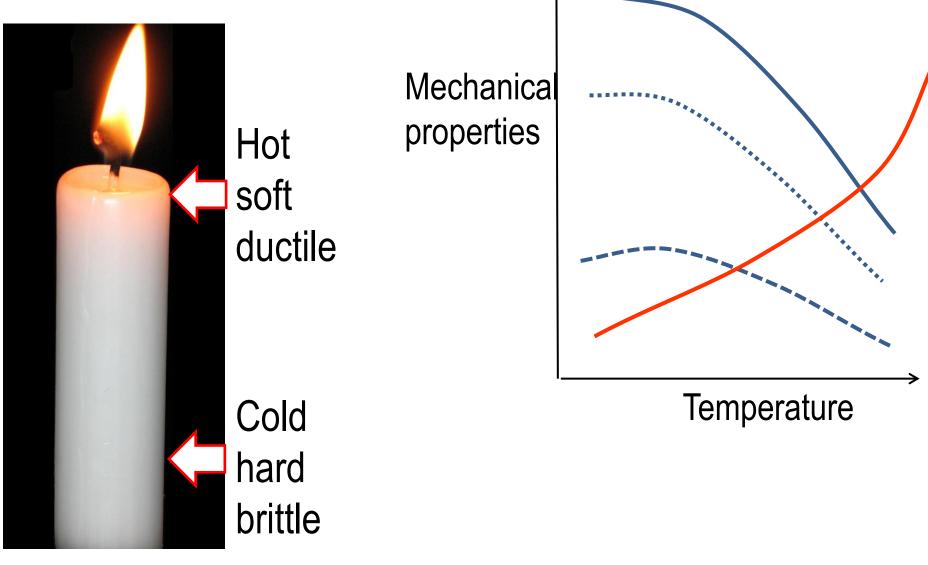
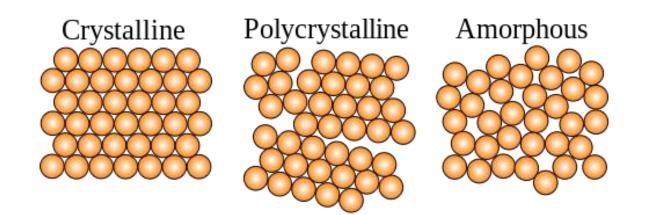

Yield Strength		Tensile Strength			Yield Strength		Tensile Strength		
Metal	MPa	(lb/in. ²)	MPa	(lb/in. ²)	Metal	MPa	(lb/in. ²)	MPa	(lb/in. ²)
Aluminum, annealed	28	(4,000)	69	(10,000)	Nickel, annealed	150	(22,000)	450	(65,000)
Aluminum, CW ^a	105	(15,000)	125	(18,000)	Steel, low C ^a	175	(25,000)	300	(45,000)
Aluminum alloys ^a	175	(25,000)	350	(50,000)	Steel, high C ^a	400	(60,000)	600	(90,000)
Cast iron ^a	275	(40,000)	275	(40,000)	Steel, alloy ^a	500	(75,000)	700	(100,000)
Copper, annealed	70	(10,000)	205	(30,000)	Steel, stainless ^a	275	(40,000)	650	(95,000)
Copper alloys ^a	205	(30,000)	410	(60,000)	Titanium, pure	350	(50,000)	515	(75,000)
Magnesium alloys ^a	175	(25,000)	275	(40,000)	Titanium alloy	800	(120,000)	900	(130,000)

TABLE 3.2 Yield strength and tensile strength for selected metals.

TABLE 3.3 Ductility as percent elongation (typical values) for various selected materials


Material	% elongation	Material	% elongation	
Metals	2010. S. J. 101.	Metals, continued		
Aluminum, annealed	40	Steel, low C ^a	30	
Aluminum, cold worked	8 2040 0 0 0 0	Steel, high C ^a	10	
Aluminum alloys, annealed ^a	20	Steel, alloy ^a	20	
Aluminum alloys, heat treated ^a	8	Steel, stainless, austenitic ^a	55	
Aluminum alloys, cast ^a	4	Titanium, nearly pure	20	
Cast iron, gray ^a	0.6	Zinc alloy	10	
Copper, annealed	45	Ceramics	0	
Copper, cold worked	10	Polymers		
Copper alloy: brass, annealed	60	Thermoplastic polymers	100	
Magnesium alloys ^a	10	Thermosetting polymers	1	
Nickel, annealed	45	Elastomers (e.g., rubber)	¹ 4	

3. Effects of temperature

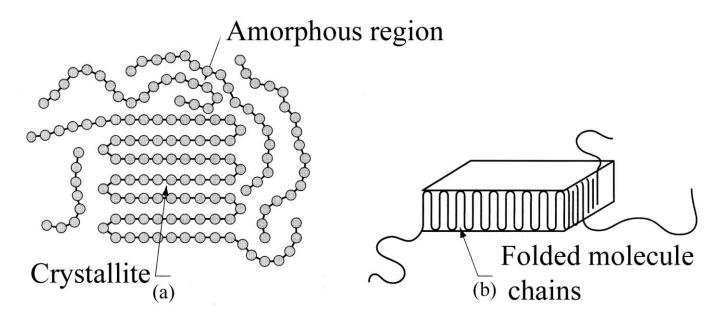
Metal & ceramic

Form by bonded atoms in space.

en.wikipedia.org

Crystalline structure

- ordered
- **3**D
- metals, ceramics


Amorphous structure

- random
- **3**D
- polymers, ceramics

Polymers

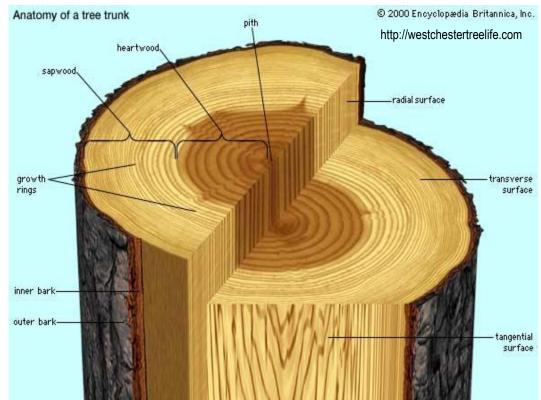
Basic elements: C, H, O, N Polymerization: combine carbons and others to chain molecules.

More crystallinity \rightarrow metal like

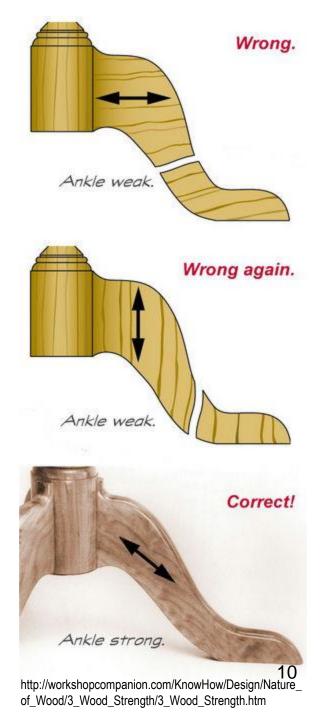
□Polymer types

- Thermoplastics Repeat heating/cooling, linear chains
- Thermoset Heat/cool once, cross-linked chains
- Elastomers Stretch >10x, coiled chains

Pro's & Con's


- Low Tm for processing
- + High ductility
- + Light
- + No rust

Temp limited


- Low strength, hardness
- Degraded by UV light
- Nonconductive

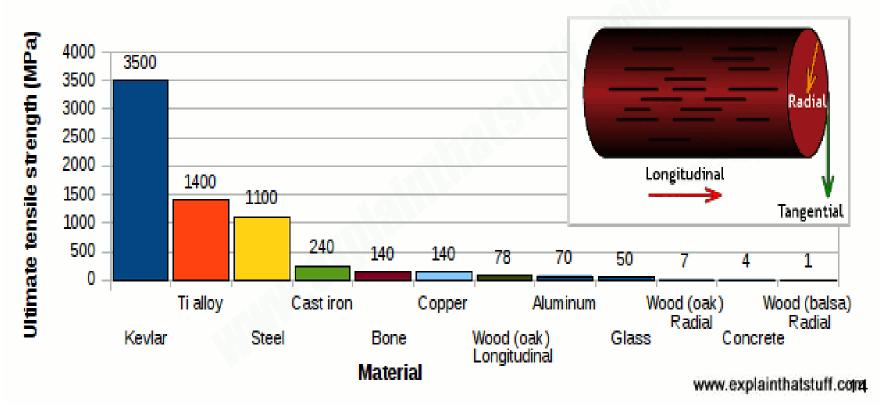
Natural materials: wood, rock, sand, clay, bone, cotton...

Hardwoods from deciduous trees (e.g., ash, beech, birch, mahogany, maple, oak, teak, and walnut). Softwoods from evergeen (coniferous) trees (e.g., cedar, cypress, fir, pine, spruce, and redwood).

 Wood is anisotropic. Its strength depends on loading directions (along or across the grains), or content of moisture /chemical treatment.

NORTH AMERICAN HARDWOODS

Wood Species	Specific Compressive		Bending Strength	Stiffness	Hardness (Ib)	
Wood opecies	Gravity*	Strength (psi)	(psi)	(Mpsi)		
Alder, Red	0.41	5,820	9,800	1.38	590	
Ash	0.60	7,410	15,000	1.74	1,320	
Aspen	0.38	4,250	8,400	1.18	350	
Basswood	0.37	4,730	8,700	1.46	410	
Beech	0.64	7,300	14,900	1.72	1,300	
Birch, Yellow	0.62	8,170	16,600	2.01	1,260	
Butternut	0.38	5,110	8,100	1.18	490	
Cherry	0.50	7,110	12,300	1.49	950	
Chestnut	0.43	5,320	8,600	1.23	540	
Elm	0.50	5,520	11,800	1.34	830	
Hickory	0.72	9,210	20,200	2.16	†	
Maple, Hard	0.63	7,830	15,800	1.83	1,450	
Maple, Soft	0.54	6,540	13,400	1.64	950	
Oak, Red	0.63	6,760	14,300	1.82	1,290	
Oak, White	0.68	7,440	15,200	1.78	1,360	
Poplar	0.42	5,540	10,100	1.58	540	
Sassafras	0.46	4,760	9,000	1.12	†	
Sweetgum	0.52	6,320	12,500	1.64	850	
Sycamore	0.49	5,380	10,000	1.42	770	
Walnut	0.55	7,580	14,600	1.68	1,010	


http://workshopcompanion.com/KnowHow/Design/Nature_of_Wood/3_Wood_Strength/3_Wood_Strength.htm

NORTH AMERICAN SOFTWOODS							
Wood Species	Specific Gravity*	Compressive Strength (psi)	Bending Strength (psi)	Stiffness (Mpsi)	Hardness (Ib)		
Cedar, Aromatic Red	0.47	6,020	8,800	0.88	900		
Cedar, Western Red	0.32	4,560	7,500	1.11	350		
Cedar, White	0.32	3,960	6,500	0.80	320		
Cypress	0.46	6,360	10,600	1.44	510		
Fir, Douglas	0.49	7,230	12,400	1.95	710		
Hemlock	0.45	7,200	11,300	1.63	540		
Pine, Ponderosa	0.40	5,320	9,400	1.29	460		
Pine, Sugar	0.36	4,460	8,200	1.19	380		
Pine, White	0.35	4,800	8,600	1.24	380		
Pine, Yellow	0.59	8,470	14,500	1.98	870		
Redwood	0.35	5,220	7,900	1.10	420		
Spruce, Sitka	0.40	5,610	10,200	1.57	510		

http://workshopcompanion.com/KnowHow/Design/Nature_of_Wood/3_Wood_Strength/3_Wood_Strength.htm

 Wood is anisotropic. Its strength depends on loading directions (along or across the grains), or content of moisture /chemical treatment.

How does wood compare? (Tensile strength)

Machinability

- <u>Metals</u>. Machinery Handbook offers comprehensive lists of speed and feed. Cutting fluids should be used.
- <u>Ceramic</u>. Most are difficult to be machined by traditional methods.
- <u>Polymers</u>. These can be cut, but rather difficult to machine and control dimensions. High speed steel tools with sharp edge can be used in compressed air to control cutting temperature
- <u>Natural materials.</u> These can be cut, but care must be practice to control cutting temperature and cracks due to the material anisotropy.
- <u>Composite materials</u>. Composites can be very challenging to be machined due to different component properties.

https://www.cnclathing.com/guide/how-to-achieve-perfectfinish-on-plastic-parts-tips-for-cnc-plastic-machining-cnclathing

https://www.woodworkingnetwork.com/product/panel-processing-solidwood-machining/5-axis-cnc-machining