Day	Activity	Time	Task
Day 1	a) 3D surface profilometry on Zygo Zegage; b) Surface property measurements on Hysitron TI 950 Tribo-Indenter	09:00 - 10:30	Learning how to use the Zygo Zegage for 3D surface profilometry
		10:30 - 12:00	Learning how to use Bruker TI 950 for nanoindentation and scratch
		12:00 - 13:00	Lunch Break
		13:00 - 15:00	Group A on Zygo; Group B on Bruker
		15:00 - 17:00	Group B on Zygo; Group A on Bruker
Day 2	a) Surface imaging of metal parts on an ZEISS EVO MA10 SEM; b) Surface imaging using scanning probe microscopy on Bruker Multimode 8-HR AFM	09:00 - 10:30	Learning how to obtain images on an SEM
		10:30 - 12:00	Learning how to obtain images on an AFM
		12:00 - 13:00	Lunch Break
		13:00 - 15:00	Group A on SEM; Group B on AFM
		15:00 - 17:00	Group B on SEM; Group A on AFM
Day 3	 a) Surface chemical composition using EDS on ZEISS EVO MA10 SEM; b) Organizing the results obtained from the previous scans on the other machines; c) Discussion on the experience 	09:00 - 10:30	Learning how to perform EDS on an SEM
		10:30 - 12:30	Group A on SEM; Group B organizes results from Day 1 and Day 2 measurements
		12:30 - 13:30	Lunch Break
		13:30 - 15:30	Group B on SEM; Group A organizes results from Day 1 and Day 2 measurements
		15:30 - 17:00	Discussions on the experience and Q&A session

Surface Engineering

Instructor: Prof. Satish T.S. Bukkapatnam Teaching Assistant: Akash Tiwari

Schedule

• Day 1

- 3D surface profilometry on Zygo Zegage
- Surface property measurements on Hysitron TI 950 Tribo-Indenter

• Day 2

- Surface imaging of metal parts on an ZEISS EVO MA10 SEM
- Surface imaging using scanning probe microscopy

• Day 3

- Surface chemical composition using EDS on ZEISS EVO MA10 SEM

<u>Contact Information:</u> Akash Tiwari Email: <u>akash.Tiwari@tamu.edu</u> Office: ETB 3018

Surface Roughness

- Sometimes also called "surface finish" or just "surface". Acceptable surface roughness depends on the applications.
- A laser mirror requires a very smooth surface whereas an orthopedic titanium implant requires a rough surface. Surface roughness is calculated from the asperities (high and low points) of a surface.

Surface Roughness

- After collecting the amplitude y_i 's all points *i*'s along an axis, the common surface roughness values are defined as:
 - Maximum Valley depth: $R_v = \min(y_i)$
 - Maximum Peak depth: $R_p = \max(y_i)$
 - Average roughness: $R_a = \frac{1}{n} \sum_{i=1}^{n} |y_i|$

• Root mean squared
$$R_q = \sqrt{\frac{1}{n} \sum_{i}^{n} y_i^2}$$

Surface Roughness

• Total roughness R_t from the highest peak to t he lowest valley points. It is also referred to as R_t or R_{max} :

$$R_{max} \equiv R_t = R_p - R_v$$

• Average consecutive peak-valley roughness R_z . This is the average of 5 largest consecutive peak-valley distances

$$R_{Z} = \frac{1}{5} \left[\sum_{i}^{5} (R_{pi} - R_{vi}) \right]^{2}$$

Surface roughness

Surface finish measurement with a (contact type) profilometer

Surface finish measurement with a noncontact optical interferometer [www.zygo.com]

- Surface texture means integrity of surface which includes finish and defects at or below surface.
- For a 2D surface, similar calculations are performed but the results are labeled with a letter 'S" as in S_a , S_q , S_z ... rather than R_a , R_q , R_z ... for line roughness measurement.

Profilometry

Profilometry

- A method to extract topographical data from a surface.
- Instrument used for this purpose is known as Profilometer.

Profilometry

Purpose of using profilometer

- How rough is surface?
- What is the density of defects?
- What is the area of voids?
- What is the height of the features

Functionality of profilometer

- Measure surface profile/morphology and defects/voids
- Generate quantifiers (surface roughness) for surface characteristics
- Questions: what are the approaches for getting the profile?
 - It can be a single point, a line scan or even a full three-dimensional scan

Contact/Non-contact profilometers

- Digital holographic microscopy
- White light interferometry
- Phase shifting interferometry
- Advantages:
 - Prevent surfaces from scratches
 - High lateral resolution
 - High speed when requirement is of small steps

http://www.isf.de/en/institut/ausstattung/alicona.html

Surface finish measurement with a noncontact optical interferometer [www.zygo.com]

Principles of Optical Profilometry

Courtesy of www.zygo.com/www. nanoscience.com

- Light beam is splits, and then reflection from reference and test material occurs, resulting in the interference
- Formation of inference fringes(light and dark bands) can be seen
- Constructive inferences areas are the lighter ones and destructive inference areas are darker ones

Principles of Optical Profilometry

- Wavelength of difference between reference and test path is equal to distance between consecutive fringes of same color
- Height variance on the test surface causes optical path differences
- Out of focus area means less inference
- Higher the contrast means better the focus

www.zygo.com

Profiolometer

ZeMaps Software

- It has a visually rich interface enabling you to see what is happening at virtually every step in the process
- Each 3D measurement provides one million data points, making it possible to evaluate the effects of surface processing
- ISO roughness parameters are standard with the software as are a variety of profiling, plotting, filtering and other interactive data analysis tools

ZeGage Profilometer

ZeGage Controls

How to Log in ZeMaps ?

Open ZeMaps

 Open the ZeMaps software by double-clicking on the ZE icon on the desktop. Wait for the initialization routine to be completed.

Software Icon

- If log in is required for your system, there are two locations from which you can access the login dialog.
 - In the menu bar at the top of the screen, select:

File→Logout OR,

- Click on the Login/Logout icon in the Stage Control Window.
- Enter Name and Password and click Ok.

User Login	X
Name:	
Password.	Ext App

Login Dialog

Log In/Logout Icon

Understanding ZeMaps

Understanding ZeMaps

 Video Window- This window provides access to controls for focus and alignment, data acquisition, viewing, locating areas of interest on a test part, and saving files.

Map Window -This window displays 2D and 3D maps of surface data. There are options for saving and loading maps, processing data, changing plot types, and printing. Map Window Toolbar

Contact profilometers

- Exemplary equipment
 - Stylus profilometer
 - Atomic force microscopy
 - Scanning tunneling microscopy
- Advantages
 - Standards of surface finish are mostly written using contact profilometers as benchmark examples
 - Direct technique and modeling is not required
 - "Analog" data- Resolution is very high
 - Independent of the surface and environment contaminants

Profile data acquisition by a stylus-type

profilometer (Credit: Dong-HyeokLee, MST, 2012, J. Rusnák' et. al, 2010)

Nanoindentation for Hardness Testing

Hardness

- *Hardness* of a material is defined as its resistance to permanent indentation (or) scratching or wear.
- Nanoscale hardness is important consideration in thin-film coatings for application in MEMS and optical devices.
- Standardized tests for hardness include Brinell, Rockwell, Vickers and Knoop.

Hysitron TI 950 Triboindenter

Bruker – Berkovich tip

Principles of measurement for hardness

- Hardness measurement is based on Area of Contact, Contact depth and force experienced by the indenter.
- Oliver-Pharr method is applied to obtain hardness value:

Hardness:
$$H = \frac{P_{max}}{A(h_c)} \qquad \begin{cases} P = A(h - h_f)^m \\ h_c = h_{max} - 0.75 \frac{P_{max}}{S} \end{cases}$$

Surface friction coefficient and imaging

- Coefficient of friction
 - Coefficient of friction μ at the interface is defined as

$$\mu = \frac{F}{N} = \frac{\tau A_r}{\sigma A_r} = \frac{\tau}{\sigma} = \frac{\tau}{\text{Hardness}}$$

- μ can be reduced by reducing shear stress or increasing Hardness.

Imaging under the second seco

Machine Operation

Navigating Sample

Setting Load Curves

Performing Indents and scratch

Analysis

19

Scanning Electron Microscopy SEM

Functions of SEM

- Tiny electron beam scanned across surface of specimen
- Magnification range 15x to 200,000x
- Resolution of 50 Å
- Wide range on depth of field
- Specimen should be conducting (or coated with thin conductive layer)
- Specimen size limited by size of sample chamber

Electron microscopy-SEM

Scanning Electron Microscopy (SEM)

- Scanning process and image formation

Schematic of an SEM

https://en.wikipedia.org/wiki/Scan ning_electron_microscope

Mechanisms of emission of secondary electrons, backscattered electrons, and characteristic X-rays from atoms of the sample

SEM vs AFM

	SEM	AFM
Imaging Advantage	High Depth of Field	High Contrast
Dimensions	2-D	3-D
Measurements	Chemical Composition	Physical Properties
Environment	Vacuum	Vacuum, Air, Liquid

AFM (left) and SEM (right) micrograph corresponding to lithium complex (C5) and lithium–calcium complex soap (C6) greases Credits-Tribology Letters, 2016, Volume 63, Number 2, Page 1

AFM(Atomic Force Microscopy)

• AFM

- Belongs to the family of Scanning Probe Microscopy
- AFM senses inter atomic forces that occur between a probe tip & substrate
- It has very high resolution and can be used in topographical imaging of samples such as DNA molecules, protein adsorption

Working principle of AFM

Notes

Notes